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SECONDARY FLOWS IN AN UNSTABLE BOUNDARY LAYER 

N. A. Zheltukhin and N. M. Terekhova UDC 532.526.3.013o4 

Analysis of a large amount of experimental data on the structure of the transition region 
from laminar to turbulent flow on a planar plate [i, 2] makes it possible to draw the con- 
clusion that, following the stages of linear development of the original instability and weak 
nonlinear development of perturbations, their three-dimensional growth takes place, and at 
some moment the evolution of wave motion is inevitably three-dimensional. Experiments de- 
termine the existence of long-wave eddy formation with the axis along the main flow direction, 
as a result of which there is a redistribution of mean flow momentum and the appearance of a 
secondary three-dimensional regime. The experimentally observed longitudinal vortices are 
periodic in the coordinate z, as is schematically illustrated in Fig. I. Significant 
progress has been achieved in the study of the nonlinear transition stages, which cannot be 
said on analysis of three-dimensional effects as applied to the mean flow. 

Fig. 1 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
4, pp. 45-52, July-August, 1981. Original article submitted June 16, 1980. 
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The first attempts of describit~g the mechanism of the three-dimensional interaction 
were undertaken [3, 4] for shear flows, modeling real flows of the boundary layer type. 
These longitudinal periodic vortices are now well known under the name "Benny--Lin vortices. ~' 
The model suggested by them (a linear approximation) made it possible to obtain the mean 
secondary flow induced by perturbations~ Similar assumptions were used in [5], where a 
boundary layer near the experimental one (the Falkner-Skan family) was considered as a refer- 
ence. An important feature of these studies is the treatment of wave interaction of different 
dimensionality (planar and three-dimensional) with a reference flow, and the study of vortex 
shape changes for various amplitude relations of these waves. The distortion of the averaged 
reference flow was not treated. A more complete study of the flow in the field of three- 
dimensional finite intensity perturbations in an incompressible flow on a planar plate is 
carried out in the present study on the basis of the exact solution of the Reynolds equations 
for both the average and vortex flows. 

Although the problem of competition of wave interaction of different dimensionality per- 
turbations is also very interesting, it is commonly assumed that the presence of three-di- 
mensional waves is dominant in the general pattern of appearance of vorticity. In the 
present study we consider their interaction with the reference planar boundary layer, se- 
lected in the form of the Falkner--Skan solution for a vanishing longitudinal pressure gradi- 
ent. The method used here does not exclude, in principle, further complication of the 
problem in the given direction. As a reference model we selected symmetric wave crossing, a 
pair of intersecting sloping Tollmien--Schlichting waves, making it possible to express simply 
force moments in the general interaction pattern~ We also investigate in the linear approxi- 
mation the time evolution of the spectrum of the Orr--Sommerfeld equation, which may be useful 
for estimating pertubation phase velocities of the three-dimensional flow obtained. 

I. Consider two perturbation waves in the form of slop%ng Tollmien--Schlichting waves 
of arbitrary initial intensity • We assume for simplicity that the waves propagate with 
identical phase velocities C = C r + iC i and wave numbers e, y 

• , ' ,  ~', p'}(x,  u, ~, ~) = ~{~,  , ,  ~,, p}(y)  e,:p (o -+~w) ,  

0 = i~(x -- Ct). (i~ 

If Y is real, one may construct a linear combination of these waves with a and C vanishing at 
several points of the z axis, i,e., a solution of standing wave type. The basic equations 
of motion are invariant with respect to simultaneous changes of sign of z and w, therefore 
the following relations are valid for the perturbation amplitudes: 

Ul(y) = ~(y) = u(y), 

~1(y) = ~2(u) = ~(u), 

w1(y) = -w~(y) = w(y), 

p~(y) = p~(y) = p (y ) ,  

while the resultant perturbation wave is represented in the form 
! ! 

u,1 -~ u2 = u (y) exp 0 (exp iyz + exp ( - -  i?z))  = 2it (y) exp O. cos 7z, 
r r t , t 

ul + u2 - -  2v (y) exp 0. cos yz, wl ~- w~ = 2 i w  0t) exp 0. s in  7z, 
t t 

pa -+- pz = 2p (y) exp 9. cos "~z. 

If the initial flow is plane-parallel, U = U(y), V = W = 0, the linearized Navier--Stokes 
equations for the perturbation amplitudes are [6] 

vu~ s - -  B y  - -  I~e Pu,  

uuu - -  B u  = Re  Uuv -+- iu  IRe p ,  w~y - -  B w  ----- i? Re  p,  

~'y -t- ictu - -  i ? w  = O, B = cz "~ + 72 -4- i~z R e  ( U  - -  C), 

I l e  = UogA,, u u = du/dg.  

The boundary conditions for them are sticking conditions at the wall 

u = v = w = 0 ,  y = 0  

(I~2) 
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and finite perturbation condition at infinity 

u, u, w-+0, y-~oo. 

In the present study we consider a self-similar boundary layer on a planar plate, described 
by the Faikner-Skan equation [7]: 

with boundary conditions 

(1.3) 

=~=0 (y=0), %-+I (y-+co) 

The boundary value problem reduce s to the Cauchy problem 

(P = % = 0, (p~ = 0.4696 (y = 0), 

and the dimensionless velocities are expressed in the form 

U = % ,  U y = % y .  

The equation is solved in the interval 0~ y ~-~ 8, where the width of the boundary la~er ~ is 
selected by the condition U(~) = 0.9999 (5 = 4~176 Using the Squire transformations, we 
reduce the three-dimensional problem to an equivalent two-dimensional one. Retaining the 
nonvarying phase velocity C and v = v, we introduce new variables uo, po, X, k, 11 as 
follows: 

k ~=0r 2"6"~, kuo = o ~ u - 6 ~ w ,  kR = ~ R o ,  % = ' ~ u - - a w ,  poll = p R e .  

We then obtain for the perturbation amplitudes the equivalent Orr--Sommerfeld system of 
equations 

vg~ - -  A v  = 11Pa~, uoyy - -  Auo = R U y v  "6 ikRpo, 

vy "6 ikuo = O, A = k 2 + ik11(U - -  C) ( 1 . 4 )  

%yy--AZ = y R e  Uyv (!.5) 

and an inhomogeneous equation for • 

with boundary conditions 

u 0 = v = % = 0 (g = 0), u0, v, % - + 0  ( g - +  ~ ) .  ( 1 . 6 )  

The solution of system (1.4), (1.6) is the subject of study of the linear theory of hydro- 
dynamic stability. A large number of reliable methods have been developed so far to obtain 
both eigenvalues k, R, C and eigenfunctions [8]. For a boundary layer of finite width the 
conditions of perturbation damping at infinity are replaced by continuity and finite per- 
turbation conditions at the outer boundary layer, which acquire the form 

el =-- uoyy + (k "6 ~)Uoy "6 k~uo = O, 
% ~ vyy .6 (k .6 ~)vy .6 k~v = O, 8 2 = k 2"6 i k R ( l  - -  C). ( 1 . 7 )  

The s o l u t i o n  o f  ( 1 . 5 )  c a n  a l s o  b e  o b t a i n e d  by  one  o f  t h e  m e t h o d s  m e n t i o n e d ,  and t h e  f o l l o w i n g  
relation is valid for X in the outer boundary within first approximation: 

~y . 6 ~  = 0 .  

2. Assuming that at all stages of evolution the perturbations satisfy the linearized 
Navier--Stokes equations, the quasistationary flow satisfies the Reynolds equations 

I p ,, 
UU~ "6 VUy "6 WU~ + V ~ - -  ~ A U  = - -  (<u'~>~ + <u v >~ "6 <~ 'w '>~) ,  
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P ~ - -  v A V  = (< >~ + <v'2>v + ~, , ,~,  UVx q- VVv + WV~ + - ~  - -  u'v '  " v ' w "  " 

t 
-r- <w >~), g/14G + V W  v + W W ,  qi  T p* - -  ~ A W  = - -  ( < u ' w ' > ~  + <v'z, />~ ' '~ 

U~ + V u + W~ = O, A = OVOx 2 + 0=1@ ~ + 0210z ~, (2 is 

where the right hand sides contain the Reynolds stresses, obtained by statistical averaging of 
the quantities u '2, v'w', etc. The problem of closing (2ol) was considered within the mono- 
harmonic approximation [8]. For the selected system of waves (i.i) we obtain that the 
Reynolds stresses are independent of the coordinate x; for example, 

<u'~> = 2]ul  = cos  = ?z, <u'w'> = 2(u~w r - -  UrW,) s in  2?z.  

The resultant perturbation wave represents a crossing with nonvanishing momentum (y, z), 
therefore tile force couple associated with it creates longitudinalvorticity m = V z -- Wy in 
the boundary layer, and the flow acquires the form U = U(y, z), V = V(y, z), W = W(y, Z) o 
For this flow the system (2.1) can be separated, and a solution can be found for m indepen- 
dently of U. 

In the variables w, ~ (V ="@z, W = ~y) the three last equations of (2ol) are written 
~n the form 

= -- (~uu q - ~ z z ) ,  ( 2 . 2 )  

where 

F(y, z) = --~F'(y)  s in  2?z;~"(y)  = <vw>u u Jr- 2?(<vv>u q- <ww>u q- 2?<vw>)~ 

Since the perturbations have a structure periodic in z, it can be expected that the secondary 
flow will also be periodic in z with the same period T = 2~/2y. Consider the linear approxi- 
mation of the full problem (2.2), called here a "viscous vortex." The linear problem de- 
scribes well the form of vortices for low perturbation intensities, when the nonlinear con- 
vective terms are smaller than the viscous linear ones; it can also be considered as a fixed 
approximation of the total problem for arbitrary amplitudes. These restrictions are also 
reflected in [3-5]~ Using formal Fourier series expansions, we have for the first term 
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~(g, z) = T(y) sin 27z. ( 2 . 3 )  

In that case m = --(~yy -- 4y2~) sin 2~z, and from ( 2 . 2 )  we obtain for ~(y) a fourth-order in- 
homogeneous equation 

The boundary conditions follow by physical considerations 

V = W = O  

V, W->-O 

for g ---- 0, which givesT ----~v ~- 0, 

for y--~ oo,whichgives W, ~5y--~0. 

The latter condition refers to the outer boundary layer, where one can adopt a de- 
creasing shape for ~ in the form ~ = (DI + D2y) exp (--2yy), leading to relations similar 
to (1.7) : 

�9 yy + 47(~y + ?~ )  = 0, ~ v  + 4?(~yy + ?~) = 0. 

The secondary flow velocity components are determined from (2~3) 

V(y, z) = --2?T(g) cos 27z, W(g, z) = ~Fu(y) sin 27z. 

The solution of the full problem (2.2) in the region G(0~y~Y, 0~z~T) was found by 
using an implicit finite-difference method of second order accuracy [9], Continuity con- 
ditions were required to be satisfied at the left and right boundaries (z = 0, z = T): 

, ( v ,  o) = , (y ,  T), ~o(y, o) = o~(y, r) ,  
,~(v,  o) = ,~(y, r) ,  co:(v, o) = ,o:(y, T). 

The boundary condition at the wall (y = O) V = 0 makes it possible to determine ~(0, z) = 
const; in particular, one can take ~(0, z) = 0. Satisfaction of the second condition W = 0 
was verified in the convergence process of the solution. For the vorticity ~ we have from 
the second equation of (2.2) ~(0, z) =-~yy(0, z). Since the vorticity of linear pertur- 
bation waves decays quickly with increasing y, it must be expected that the vorticity of 
secondary flow induced by them can also be taken equal to zero for sufficiently large y. 
The upper boundary of the calculated region was widely varied,~~3~; it seemed that 
was practically equal to zero for y ~ 1.55 already. 

The stream function also decays at infinity, but considerably more slowly. Therefore, 
to restrict the region of solution we use asymptotic relations~ For the boundary conditions 
stated we use the periodicity conditions of ~ in z(~, (y, z) = ~(y) sin 2yz), and from the 
second of Eqs. (2.2) and the condition m (Y, z) = 0 we obtain for the amplitude function 
~(y) ~yy -- 4y2~ = 0. If it is now assumed that the asymptotic ~(y) satisfying this equation 
is of the form ~(y) ~ D exp (--2yy), where D is an arbitrary constant, a relation of the 
form ~y + 2y~ = 0 can be adopted as a boundary condition as y = Y. More accurate results 
can glve an asymptotic representation of ~(y, z) for large y in the form of a harmonic series 

(y, z) = ~ Di exp(-- 27ig) sin (27iz). 
i = l  

The solutions obtained for boundary conditions in a series form with n > 3 and the relation 
~y + 2y~ = 0 are very close. The distribution (2.3) was assigned as initial approximation. 
To obtain the longitudinal velocity components of the main flow U(y, z) one must solve the 
first equation of system (2.1) (Px = 0 for a plate): 

VUv -6 WUz ---- (t/Re)(Uvv -6 U~) -- • 

where H is the Reynolds stress 

H = / + <uv>u , f = (<~w>u -6 2~<uz,3>) cos 27z. 
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To obtain hence velocity curves U(y, z) = U(y) corresponding to the distribution (1.3) in a 
laminar boundary layer without perturbations (or for infinity small perturbations with • § 
0) and without secondary shapes induced by them (V = W = 0), a supplementary force F a = --(i/ 
Re)~vvv was introduced into the right-hand side of this equation, having the form of a 
Falk~&~--Skan force (1.3). The Reynoldsequation, thus, acquires the form 

VU,j -i- WU~ = (t/fle)(U,j~j _ U::)  - -  z~][ § F a. (2.4) 

The solution range is the rectangle GI (0-~-y~Y1, 0~ z~T), and for Y = Y~ the regions G 
YI~ 3~ The following boundary and G~ coincided. The quantity Y~ was also varied, 5 =~ . . 

conditions held for U(y, z): 

~;(~, O) = U(g, T), U~(y, O) = U~(y, 1"), U(O, ~) = O, uy (r~ ,  z) = O, 

and a possible variant of the last condition is the asymptotic expansion U(Y~, z) = 1 + 

Diexp(-- 2~,Y1i )r The distribution (1.3) was chosen as initial approximation. To 
i=i 

solve (2.4) we used an implicit scheme of second order accuracy (the Pisman--Ruckford scheme) 
[10]. 

A study of the evolution of the time spectrum of the Orr-Sommerfeld equation (1.4) for 
T 

U(ff, z) dz was performed by methods of linear stability the secondary averaged flow <U(g)> = ~ 
0 

theory. A zero of the function e= of (1.7) was sought on the outer boundary Y~. This 
function is analytic in its argument C = C r + iCi, therefore the use of the Cauchy--Riemann 
condition simplified the calculation considerably. The averaged flow <U> and its derivatives 
were approximated by cubic spline functions. 

3. The results presented below were obtained for critical Reynolds numbers in the 
linear theory (k~ = 0o301, R~ = 519.2, C = 0.3959 + i0 (k = 0.24745, R = 426.7) for two- 
dimensional perturbations for different values of the transverse wave numbers y = 0.05; 0.i; 
0.15 (0.2k, 0.4k, 0.6k respectively). The transition to three-dimensional perturbation 
parameters is realized by the Squire equations, and k: = k~, R~ = R~:o 

Figure 2 shows the Reynolds stress amplitudes ~T~ f, <UV~y for y = 0.I. The integral 
curve ~Z-(y) is negative, and, consequently, the rotation generated by it must occur clockwise. 
For the same values Fig. 3 shows the amplitude of secondary "viscous vortices" (linear 
approximation), Y was selected ~ 3~ to obtain closed forms of vortices, and the stream lines 

= const are illustrated also. The curves 1-3 correspond to the p#rturba~ion intensities 
= 0.01, 0.02, and 0.03. The secondary vortex is symmetric ~n z~ its center is found at 

y = 4, z = T/4 for all ~, and two vortices with right and left rotation are located on the 
period 0 ~z~ T, 

The average secondary flow <U(y)> is represented in Fig. 4 for 0.@i~ z~0.03 (curves 
1-3) with step A• = 0.01. The subscript 0 denotes the laminar profile (1.3). It is seen 
from Fig. 4 that the secondary longitudinal vortices, induced in the boundary layer by three- 
dimensional perturbations, lead to a significant flow rearrangement; the profile becomes 
more filled in the boundary layer region. The emergence on the velocity of the unperturbed 
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flow occurs for y ~ 4--58, where 6 is the original width (1.3). 

Figure 5 shows the change in the resultant characteristics of averaged flow <U>, <U>y, 
<U>yy for ~ = 0.05, compared with laminar forms denoted by the ~ubscript Q. It seems that 
all characteristic quantities change in the boundary layer y < 3, ~s this is also a peculiar 
feature of turbulent flow. Similar results were obtained for other values of Y (0.05 and 
0.15), while both the vortex intensity and profile ocqupation increase with 7 for the same 
~. Interesting results were obtained in studying the time evol~tion of ~he Spectrum of the 
Orr-Sommerfeld equation within the linear approximation. It was fpund in advance that for 
the critical Reynolds number in a laminar boundary layer there exist six spectral modes, 
the first of which is neutrally stable (C i = 0). The data of [ii] served for verification 
in this attempt. In the flow evolution process this patterq is rearrangement, as shown in 
Fig, 6 for y = 0.05 (dashed lines)and y = 0.i for ~ = 0.05; mode 1 for y = 0,05 occurs in 
terms of weakly unstable setting of C i > 0, and then~ as are also mode~ 2-5, they become 
"strongly" stable (large negative Ci). The behavior of the third mode is interesting. For 
y~/0.1 the value of Ci for the established profile is very close ~0 zero (y = 0.i, C = 0,96- 
0~007i). It can be concluded that the possible instability of secondary flow can be related 
to perturbations whose phase velocity is of the order of the leading flow velocity, as is 
characteristic of a vortex forming boundary layers observed experimentally (U ~ 0.8 Uo). For 
y = 0.05 this is not very distinct. The sixth mode is not traced for the secondary flow. One 
of the calculation variants for m = 0.02 is shown in Figs. 7, 8. Figure 7 shows the quan- 
tities V and W in different cross sections z, and for comparison we plot the maximum ampli- 
tudes of the "viscous" approximation. The vortices obtained are displaced and deformed iB 
y and z in comparison with the "viscous" ones. 
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The results make it possible to clarify the effect of the convective terms. If for 
x ~0.01 the values of V and W of both approximations are very close (for ~ = 0.005 the devi- 
ation is Wma x ~ 3%, and the amplitudes of V practically coincide), for intense perturbations 

> 0.01 the velocity amplitudes of the full vortex are significantly smaller, i~e., energy 
expenditures on convective mixing promote vortex quenching. Similar smoothing is also seen 
on the average velocity profile (Fig. 8)~ and leads to smaller profile occupation in the 
boundary layer region (here 0 is the laminar profile, i is the viscous approximation, and 2 
is the full problem. 

An attempt has been made to calculate the degree of turbulence of the flow obtained ~To 
Similarly to power-law turbulence we take gT = ((I/3)(<u'2> + <(V + v') 2> + <(W + W')>))~/=o 
It seems that though we obtained e T = eT (Y, z), this value is very close to the initial value 
of the perturbation intensity ~. T b as, it can be assumed that within the model adopted flow 
turbulization is determined by the perturbation intensity. 
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